As medical diagnostics extensively use radiography, the driving force for the X-ray image sensor community is achieving the lowest possible dose for imaging. Furthermore, medical diagnostics would benefit greatly from true color X-ray imaging, as it could be more accurate.
A low-cost and low-power X-ray photon counting detector has been developed with the highest possible scalability and manufacturability. This sensor allows direct coupling with scintillators. It distinguishes between two X-ray energy levels, allowing true color interpretation of the data.
Standard CMOS and CIS technology are being used, which resulted in a USB camera demonstrator (92×90 pixels @ 1cm²) for true color X-ray imaging. This demonstrator can be easily expanded to a wafer level device (e.g. 14x14cm2 area).
Beyond space and medical application, this technology could be usable in other X-ray applications such as non-destructive testing, µCT, healthcare, luggage inspections, etc. as it allows for better interpretation of the images.
This company is a design house from Belgium for turnkey, high-end, high performance image sensors for space, medical and other application domains.
Innovations and advantages of the offer
The dual channel photon counting with scintillators incorporates the following concepts:
- High scalability by stitching and minimal gap abutting
- High manufacturability (wafer scale devices of 14x14cm2)
- No heavy semiconductor hybridization, but rather using optically coupled scintillators (more economical)
- Use of 0.18µm standard CMOS Contact Image Sensor technology
- Front side illumination
- High yield is ensured by a low transistor count per pixel and fault tolerant design
- Low power consumption due to the CMOS technology
- Real-time evaluation on site on a variety of equipment is possible
Application
Medical applications:
- medical diagnostics
- bone densitometry
- mammography
and other X-ray related applications including:
- non-destructive testing (µCT)
- healthcare (dentistry)
- luggage inspections
Description of Space Heritage
The heritage of this current project is the result of previous efforts of the technology provider in the development of radiation hard pixels for space application, and the development of an ASIC in the frame of an ESA project targeted at infrared sensor signal conditioning for space applications (ESA AO/1-6814/11/NL/AF, Prototype ASIC Development of Large Format NIR/SWIR Detector Array).
Both developments led to a collection of technology solutions for space applications including radiation hard pixels and a generic 0.18µm analogue and digital radiation hard library.
Starting from this expertise, X-ray imaging is a closely related field.
- Developer: Open Source Management